Step of Proof: strict_part_irrefl
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
strict
part
irrefl
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
4.
b
:
T
5.
R
(
a
,
b
)
6.
R
(
b
,
a
)
7.
a
=
b
False
latex
by ((OnHyps [5;6] (HypSubst 7))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
False
,
A
,
Lemmas
not
wf
origin